AD=A098 755 GENERAL RESEARCH CORP SANTA BARBARA CA F/6 9/2
COBOL AUTOMATED VERIFICATION SYSTEM: STUDY PHASE.(U)
MAR 81 R MELTON: G GREENBURG» M SHARP F30602=-80=C=0101
UNCLASSIFIED RADC=TR-81-11

e

S

||||| 10 ' ke 2
=2 e
i -
— ll&
IS s e
== = I=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 19638

RADC-TR-81-11
Final Technical Report
U March 1981
20

c; COBOL AUTOMATED VERIFICATION
o SYSTEM: STUDY PHASE
Richard Melton

=T
Gary Greenburg
2 Michael Sharp

[No———

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command)
Griffiss Air Force Base, New York 1344I '

——

This report has been reviewed by the RADC Public Affairs Office (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-81-11 has been reviewed and is approved for publication.

APPROVED: Xé:‘m_, WA«Z) .

" LAWRENCE M. LOMBARDO
Project Engineer

¥, Information Sciences Division

FOR THE COMMANDER: }"’gf—’ﬁ /%éc'/

JOHN P. HUSS
Acting Chief, Plans Office

1f your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (ISIE), Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED

SECYRTTY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF OB oML B O RN

z GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

] pAcI87<ls

GOBOL AUTOMATED VERIFICATION SYSTEM"

STUDY 'PHASE, Mar i o= September 88

4 TITLE (nas-mm;) v 4.5 TVYRx *ﬂwﬂ?v-!ﬁ-o_V
(7 Final echnical Rep

LS. _PEREQRMING-OAG. AEBOAT NUMBEA - - -

N/A
7 Autwomrsy, - 8. CONTRACT OR GRANT NUMBER(a)
i |[Richard elton /’jig
'|Gary fGreenburg > F3¢6ﬁ2—8,0¢-c—ﬂ1ﬂ1 207
Michael;Sharp] T
- PEREOAMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
General Research Corporation ¢ AREA & WORK UNIT NUMBERS __—
PO Box 6770 T fe3728F "7 /ﬁ g)
Santa Barbara CA 93111 (46 JT2531pz205
11. CONTROLLING OFFICE NAME AND ADDRESS K Ll 2o REROAT OATE
Rome Air Development Center (ISIE) i 4 | Marcs981
I4

Same UNCLASSIFIED
15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE
N/A

18. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbetract entered in Block 20, il different {rom Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Lawrence M. Lombardo (ISIE)

19. KEY WORDS (Continue on reverse side i necessary and identity by black number)

Computer Software Testing Software Development Tool
Computer Software Verification

COBOL 68

COBOL 74

20. ABSTRACT (Continue on reverse side il necessary and identify By dlock number)

This report presents the results of a study to specify the required
capabilities and high-level design of an automated tool to support the
testing and verification of COBOL software systems. Included is a state-
of-the-art review of software testing and verification with emphasis on
techniques applicable to COBOL programs.

. R i - __‘____,__.{,._
Griffiss AFB NY 13441 " ™ NUMBER OF FAGES ¢ =
84 k o
18, MONITORING AGENCY NAMZ & ADDRESS(if diffarent from Controiling Otfice) 'S. SECURITY CLASS. (of teport)

DD 557", 1473 eoimion oF 1 Nov 85 1s casoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

/:// P /Y JUL

UNCLASSIFIED
SECYMTY CLASHFICATION OF THiS PAGE(When Dais Enterse)

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tu'T PAGE(When Data Entered)

:
4
)

ABSTRACT

The COBOL language, and automated software testing tools, have
been studied in order to design an Automated Verification System for
COBOL. The proposed functions and design of the system are summarized
in this report. Details of the system are presented in the ®CAVS
Functional Description” and "CAVS System/Subsystem Specification.® To
provide a perspective for the capabilities of the proposed system, this
report contains a critique of the COBOL language, a description of
methods of software testing, and a characterization of errors in COBOL.

Considerations for future capabilities of the system are also outlined.

N

}

Accession E?f__,..

“yr1s GRARL
r-1C TAB O
v ~nnounced O

HERN
-
[Y
}

gtification —————

! v ,—_‘_—__,___.——-—-'_"_
: “i:trihutigp[
wailability Co§es
Avail and/or
4 | Spscial

!
i
!

e o it e

CONTENTS]
1
SECTION PAGE %
ABSTRACT i
1 INTRODUCTION 1-1
g 2 TIMETABLE 2-1
3 STUDY -- THE COBOL LANGUAGE 3-1
3.1 Historical Background 3-1
3.2 ANS COBOL - 1968 and 1974 3-2
3.3 The Nature of COBOL 3-3
4 STUDY -- SOFTWARE TESTING AND VERIFICATION 4-1 &
4,1 Introduction 4-1
4,2 Testing Methods 4-3 j
4.3 Software Tools 4-10
5 A SYSTEM FOR THE AUTOMATED VERIFICATION OF COBOL 5-1
PROGRAMS
w” |
5.1 Capabilities 5-1 E
5.2 Design 5-6 .
5.3 Operation 5-10 !
6 ENHANCEMENTS BEYOND CURRENT STATEMENT OF WORK 6-1
6.1 Continuing Needs of CAVS Users 6-1
6.2 Summary of Proposed Enhancements 6-1
6.3 Characteristics of Proposed Enhancements 6-5
7 BIBLIOGRAPHY 7-1

iii

APPENDIX
A MATERIAL REFERENCED IN PHASE 1
B COBOL IMPLEMENTATION SUBSET

iv

FIGURES
NO. PAGE
2.1 Proposed Schedule 2-1
5.1 Overview of CAVS 5-5
5.2 CAVS Design Overview 5-11
5.3 CAVS User Options 5-14
6.1 Project Library verview Display 6-7
6.2 Status Display for One Module 6-8
6.3 CAVS Suggestion Capability 6-9

Lo Ay

TABLES
NO. PAGE
4,1 Software Tools Examined in Study 4-12
'; 4,2 CAVS: An Integrated Tool 4-16
'
g‘ 5.1 Summary of CAVS Function 5-2
J 6.1 Summary of Proposed Enhancements 6-2
i
!
i
3
! K
: 1
vi

:
- o mm—t e - —ESR— -
e e Nt e e

The purpose of this contractual effort was to determine and specify
the required capabilities for an automated testing and verification
system for COBOL software systems. The effort provided a significant
review of the state-of-the-art of software testing and verification,
with emphasis placed on techniques applicable to COBOL programs.
The resulting capabilities were specified in two separate documents -
a Functional Description and a System/Subsystem Specification, which
will be utilized during the implementation phase of the effort. The
availability of an automated testing and verification system for
COBOL is significant in that it will enhance Air Force software
development capability and result in a more cost-effective and
re]iable product. This effort was responsive to the objective of the
RADC Technology Plan, TPO 4G3, "Software Development and Test Tools."
/t/a« ,!,5/,,1[;,,4_
LAWRENCE M. LOMBARDO

Project Engineer

YIS SO BPIN

INTRODUCTION

General Research Corporation is under a two-phase contract with

Rome Air Development Center to design and implement an automated tool to
assist in the development, testing, verification, and maintenance of
COBOL software.

Phase 1 of this contract was (1) the study of the COBOL language
and recent advances in the testing and verification of computer soft-
ware, with emphasis on techniques applicable to COBOL programs, and (2)
the development of a functional description and system/subsystem speci-

fications for the tool.

Phase 2 will be the implementation, testing, and user training

period.

This final report on Phase 1 describes our progress through the
study phase, presents highlights of the functional description and
system/subsystem specifications (which are given in detail elsewhere),
reports our findings and conclusions, and proposes future capabilities

for consideration.

General Research Corporation's Software Quality Department made an
in-depth study of COBOL: the structure of the language, its history, the
type of installations which use it, the reasons they chose {t, the
problems they have encountered in programming in the language, COBOL's
limitations and advantages, and the computers on which it is being used.
We examined a wide cross—section of COBOL tools available on the market

today.

We found that (1) the majority of available commercial COBOL
software tools were designed for IBM systems, since IBM commands such a
large portion of the market, and (2) although many of the tools avail-

able today offer good testing features, no one offers more than one or

- o = 4 o —

Y. S

two of the available methods. To put together a comprehensive software
quality package would require purchasing several tools, each with its
own command language and eccentricities. Further, communication between
the tools would be quite difficult; not all the tools are available for
a particular brand of computer; and many of the tools have poor documen-
tation., Also, since they are generally written in assembly language or
a scientific language such as Fortran or PLl, maintenance would be

difficult.

The COBOL Automated Verification System (CAVS) is intended to be a
comprehensive software-quality package that does not suffer from these
deficiencies. CAVS will be written in American National Standard COBOL
- 1974. CAVS will accept for testing analysis any COBOL program written
in ANSI-COBUL 1968 or ANSI-COBOL 1974 for the Univac, Honeywell, or DEC
VAX computer systems. The COBOL compilers for these computers are not
exactly alike; therefore CAVS will be written in a subset of ANSI-COBOL
1974 which is compilable on all three. By this method, CAVS will be

made portable rather than having to be written in three versions.

CAVS will be implemented with the well-proven methodology of
structured, modular design. This will permit easy maintenance and
modification in the event of later enhancements, changes in the computer

system, or changes in the design of CAVS.

In short, CAVS will be a comprehensive collection of the most
current techniques for software testing and program development,
organized into one tool and requiring one easy-to—execute command

language.

DOCUMENTS DEVELOPED DURING PHASE 1

l. Functional Description

2. System/Subsystem Specification
3. Final Report - Study Phase

4, Draft Pveliminary User's Manual

1-2

DOCUMENTS TO BE DEVELOPED DURING PHASE 2

l. User's Manual
2. Maintenance Manual

3. Test Plan

4. Program Specification

5. Final Report
6. Training Material

7. Testing Report

i st

2 TIMETABLE

i

5T

The following chart presents the schedule of activities for Phase

2 and the DMA option of the COBOL Automated Verification System

TS

project.

FIRST YEAR SECOND YEAR |]
vj2|3]ajsjejz]lslefw|nfzj1j2)3fajsfel718]9]

aann
PHASE Il — SOFTWARE 3 I
IMPLEMENT ON VAX i z
INITIAL DELIVERY (RADC) 4 ‘
TEST AT PROC

MAINTENANCE (RADC)

. FINAL DELIVERY (RADC)
; RE-HOST AT DMAAC & DMAHTC |
TEST AT DMAAC & DMAHTC .
MAINTENANCE (DMAAC & DMAHTC) i
ORIENTATION (USER) (DMAAC & DMAHTC) ‘
MAINTENANCE COURSES (DMAHTC)

i
‘ |
PHASE 1l REPORTS | L
STATUS REPORTS A A 'A A
MAINTENANCE MANUAL (RADC) l] ‘
’ |
i

i g e bt -4 e

R S &

b
b
B S I 8

USER'S MANUAL (RADC)
TEST PLAN (RABC)

FINAL REPORT

PROGRAM SPEC.

USER'S MANUAL (DMAAC & DMAHTC)*
MAINT. MANUAL (DMAAC & DMAHTC)*
TEST PLAN (DMAAC & DMAHTC)*
PROGRAM SPEC. (DMAAC & DMANTC)*

USER TRAIN. MATER.*
MAIN. TRAIN. MATER.*

—>—>—~{>~—F- iy -

-

l!

el

Jia
SEInE

A DRAFT VERSION
A FINAL VERSION
« GOVERNMENT OPTION

Figure 2,1. Proposed Implementation Schedule for CAVS

TR Tl R Ry

ot

b

VO30 s, et

3 THE COBOL LANGUAGE

3.1 HISTORICAL BACKGROUND

During the 1950s as manufacturers entered the computer business,
each one developed its own computer programming language for its own
machines. Program portability was non-existent and it became increas-
ingly difficult for programmers to be mobile. The Federal Government,
the largest user of computers, became concerned about the need for a
"common” programming language for business applications of data pro-

cessing,

In 1959 the original specifications for the COBOL language were
drawn up by a group of computer users and manufacturers. The first
documentation was distributed in April 1960. The early 1960s brought
several revisions to COBOL, each one making the language less “"common”

to the different computers in use at that time.

Again, the manufacturers assembled and developed a new, "standard”
COBOL called American National Standard COBOL (ANS COBOL). The new
language gained widespread acceptance in the US business sector and
throughout the world. The further development and definition of COBOL
is the function of the CODASYL (Conference On Data System Language)
COBOL Programming Language Committee.

The standard of the language in the US (an extensive subset of the
full CODASYL COBOL definition) is the American National Standard COBOL,
X3,23-1974, as approved by the American National Standards Institute
(ANSI). This has replaced the previous ANS COBOL X3.23-1968. A new ANS
COBOL should be completed before the end of 1Y8l.

3-1

-~

3.2 ANS COBOL - 1968 AND 1974

ANS COBOL-1968 was the first effort by the CODASYL-ANSI group to
define COBOL as a programming language to be a standard throughout the
world on all those computer systems which chose to conform te its

guidelines.

After a few years of working with these guidelines, the group
found that the main skeleton of the language was homogeneous among most
of the participating computer users. However, due to lack of specifi-
city in some guidelines and the differences in the hardware and design
of the computer systems, some sections of the language were markedly
different from one machine to another. Gathering all this information,
the CODASYL group assembled again and produced a new set of more
specific guidelines and released ANS COBOL-1974.

The ANS-74 version of COBOL was created to (1) delete sections
that hindered efficient coding or standardization, (2) add sections to
enhance COBOL's capabilities, and (3) resolve differences or ambiguities
created by the different compiler manufacturers' versions of the
language. The third item was accomplished by being more specific in the
wording of those sections of the Standard, and by requiring the compiler

manufacturers to adhere more closely to the specifications.

A great improvement over ANS COBOL-1968 had been realized. As the
computer manufacturers finished their versions of COBOL according to
ANS COBOL-1974 specifications, and the different versions were compared,
it was found that there were far fewer differences this time, although
they were not identical because of the inherent differences mentioned
above. Each manufacturer respected the guidelines and any serious

deviations were noted as extensions to the ANS.

e ok ki

Our study has had three objectives: (l) determine the differences
between 1968 and 1974 ANS COBOL to make certain our AVS will recognize
both versions, (2) determine differences between the computer manufac-
turers' dialects for the same reason, and (3) develop a skeleton COBOL
(Appendix B) common to Univac, Honeywell, and DEC VAX machines in which

to write our AVS.

COBOL Djalect Differences. A truly portable COBOL AVS must recognize

not only the two standards, 1968 and 1974, but also the dialects of
different computers. Design and operational differences exist between
computers, and although each satisfactorily compiles a program which
meets the requirements set by the Standards committee, it will not
compile a program which uses another manufacturer's enhancements to the

standard. Users at each installation make use of these enhancements.

3.3 THE NATURE OF COBOL

COBOL was created to solve the special data processing problems of
the business world. The language was not designed to solve complex
mathematical or scientific problems or to facilitate number-crunching
computer analysis, but rather to expedite the handling of everyday
business affairs with great speed and accuracy. COBOL was created to
process accounting, payroll, inventory, tax, and data base maintenance
programs in a manner which allowed efficient use of large data files of
information. Most business programmers are not highly-trained scien-
tists, so the syntax or wording of the language was designed to be as
similar to everyday English as possible. Importance was placed not so
much on features such as mathematical functions and speed of calcula-
tions as on efficient input and output of large data files stored on

magnetic tape or disk.

A typical COBOL system could be described as a program (with
usually not more than five subroutines) of approximately 1000-5000 lines
of ~ode. The program is designed to create or.update a large file of
data and then produce update and error reports. Mathematical operations
are mostly arithmetical: add, subtract, multiply, and divide. Data is
read into the computer usually from secondary storage such as magnetic
tape or disk, wupdated or selected by conditional statements, then

reformatted for printing or storage.

A business-oriented data processing problem can be broken down

into four distinct groups of logically related information:

1. Identification of the type of problem (accounting, payroll,
etc.)
2. The data processing environment in which the problem is to

be solved (the computer and peripheral equipment needed to

solve the problem).

3. Description of the data to be processed, the format of the
data in a record, and the format of records in a file. 1In
addition, the organization of the files must be described,

and the processing mode used must be stated.

4, The procedure(s) by which the data is to be processed to
solve the problem.

The COBOL language is structured to accomodate these four groups
of logically related information, in four named divisions: IDENTIFICA-
TION, ENVIRONMENT, DATA, and PROCEDURE. Every COBOL program must
contain these four sections, and the structure of the language dictates

a specific format to be used to describe the information in each.

e A e el el

e dnt

|

COBOL Errors. Martinl analyzed the type of errors occurring in deliver-
ed COBOL programs in an attempt to evaluate the effect of complexity on
error frequency. Commercial and research COBOL programs running on
Honeywell 6060 and NCR 820U systems were tested by a source program

analyzer. In summary, he found the following types and frequencies of

errors.
Error Type Percentage of Total Errors
Logical 25
Data Handling 1l
Input/Output 16
Computational 11
Interface (Subprograms) 9
Data Base ;
Other ' 14

Analyzing this table, we see that 36Z of the total errors were
those types of errors which occur uniformly among most computer lan=-
guages, the logic and computational errors. However, the errors which
arise from the data handling, input/output, and data base sections,

typically COBOL errors, account for 41%Z of the total errors.

1 C. E. Martin, A Model for Estimating the Number of Residual

Errors in COBOL Programs, Ph.D. Thesis, Auburn University CI-77-97,

3-5

PN

An internal Honeywell study1 on properties of COBOL programs

compared the static and dynamic characteristics of commercial programs.

Researchers used a source program analyzer to count the occurrences of

critical COBOL keywords. Dynamic performance was monitored by executing

instrumented versions of the same programs. The study concluded:

The most frequently coded source statement type was MOVE,
followed by GO TO, IF, WRITE, ADD, and PERFORM, in that

order.

The most frequently executed statement was IF, followed by
GO TO, ADD, MOVE, PERFORM, and READ in that order. IF
statements made up almost half of the total statements

executed.

The static and dynamic nature of programs differs greatly.
Simple inspection and static analysis will not yield a valid

picture of run-time behavior.

The large number of IF-statement executions appears consistent

with the observation that most commercial COBOL programs input large

amounts of data to be either tested by conditional statements for

certain properties, selected for modification, or output in reports,

rather than perform extensive arithmetic operations.

1

R.J. Chevance and T. Heidet, "Static Profile and Dynamic Behavior of
COBOL Programs”, SIGPLAN Notices, Vol. 13, No. 1, April 1978,

4 SOFTWARE TESTING AND VERIFICATION

4,1 INTRODUCTION _

One of the goals of this phase of the CAVS project was, through
research and analysis of current tools and techniques, to develop a
methodology for systematically and comprehensively testing COBOL

software.

Usually, COBOL software is tested only according to its devel-~
oper's intuitions, if it is tested at all. Since the reliability of
software is at least partially dependent upon the thoroughnrss of its
testing, increased testing therefore contributes to increased relia-
bility.

Simple computer programs can be comprehensively tested without
difficulty. When computer software becomes complex, usually by length
of program or number of paths possible so that human intuition is
inadequate to deal with its subtleties, the testing activity must be
based on a systematic and rigorous methodology. Most COBOL software
systems are lengthy or complex, so that the advantages of an automated

verification system become pronounced and desirable.

Approaches to Software Quality. The computer science community has

recognized the problems concerning software correctness and has been
developing systematic approaches to increase the reliability of software

and simultaneously reduce the overall cost of producing it.

"Synthesis” techniques generally try to increase software quality
by keeping software problems from happening in the first place. For

example:

. Structured programming disciplines reduce the complexity of

software (and thereby enhance its quality and reliability)

by constraining the control structures of the programming

language used.

B OV

e e

3 ° Chief programmer teams assign a talented person entire

responsibility for all aspects of a software system,

including its ultimate effectiveness and reliability.

° Software design methodologies such as "top down” or "bottom

E up” systematize the production of software and thereby

improve the quality of the programs.

The alternative, to deal with software which has already been
developed (or is in the final stages of development), involves two

primary “analysis” approaches:

° Program proof demonstrates the correctness of programs by

treating them as if they were mathematical theorems. An
automated theorem prover is often used to assist in the

construction of proofs.

) Automated Verification Systems (AVS) increase the practical ’
reliability of software by increasing the level of "tested-

ness” achieved.

Limitations. Although advances are being made, program proving through

', logical or mathematical theorems is impractical today for programs of

g

any size. Further, there is still discussion as to whether this mode of

testing is "more correct” than other methods.

4 An Automated Verification System, however, is a valuable tool.
The role of the AVS {s to assure that software testing meets some
criterion of completeness. Comprehensive exercise of a software system

does not pguarantee that it 1is error-free, but practical experience

b M

indicates that thorough exercise will locate a very high proportion of
errors. Hence, testing with an AVS as an approximation to full program

verification, along with proper system design, 1is a practical and

———

valuable methodology.

4,2 TESTING METHODS

The common concept uniting this study is that software veri-
fication is a combination of separate techniques that, when applied
together, form a good base methodology for testing. These techniques
are (1) systematic design methodologies, (2) documentation, (3) static

testing, and (4) dynamic testing and performance measurements.

4.2.]1 Systematic Design Methodologies

It is imperative that software design be efficient, logical, and
correct. Bad design increases programming time, programming errors,
execution time, and maintenance frustrations. 7The technique of struc-
tured, modular design has been shown by working experience to be of

great value in reducing these problems.

If a system has been designed and implemented in a structured
fashion (top-down, bottom~up) using structured constructs and dividing
program tasks inco modules, the design, coding, and testing can be
done in small steps. Further, enhancements or changes to the system can

be done with ease and efficiency.

Most COBOL programs will neeud to be changed as the needs of the
user change. It is therefore valuable to design a program so that it
can be modified or maintained. Good planning and structure early in the
design phase plays a large role in this. An automated verification
system should encourage the use of structured programming and increase

the value of the program written in modular form.

4.2.2 Documentation

Because maintenance of COBOL software has become such a large
concern, there is a need for good comprehensive documentation. Person-—
nel turnover, constant modification of programs, and high cost of
programming time make it imperative that documentation of the system,

from design through maintenance, be up—to-date and complete.

4-3

ey

[OOSR

Examples of automated documentation include cross—-reference
listings, program management systems, and printed reports such as those
produced by DAS and DCD II,l or by an automated verification system such
as FAVS and JAVS.

e b g RNy el

4.2.3 Static Program Analysis

One class of methods for software quality enhancement can be
categorized as "static analysis”. These methods scan the source text of
a program for errors in syntax and semantics which can be detected
without running the program on a computer. They provide consistency

checking and documentation about the definition, reference, and communi-

it

cation of data within the program. They identify programming constructs

which may be 1legal but risky; and they provide global, organized
information about the identifiers used in the program. Static analysis
expands upon the sort of diagnosis performed by a typical compiler. In

general, static analyzers are most useful in debugging.

4.2.4 Dynamic Program Analysis

Two basic types of dynamic program analysis are: analysis of
statement-level behavior and aralysis of execution coverage. Both are

well-known, general-purpose testing aids.

Statement-level Analysis. In statement-level dynamic analysis, all

program statements are instrumented in order to obtain detailed infor-
mation concerning the program's internal behavior. This technique

produces information that is more detailed and more closely related to

the source program information than such earlier techniques as hardware

monitoring, software monitoring ("snapshots”), and simulation techni-

1 DAS and DCD II are products of CGA Computer Associates of Rockville,

Maryland.

PRSI Nalf st S te s 2

ques. Typically, a statement-level preprocessor automatically augments
each source program statement with a "software probe” -- added state-
ments or the invocation of a subroutine which takes measurements- while
the program is running. These measurements usually include the values
of selected program variables and the number and types of branches

taken.

When the program terminates, summary reports are printed which
show the ranges of the program's intermediate variable values, which
branches were taken and with what frequency, and which statements in the

program were not executed.

Execution Coverage Analysis. This technique gathers information on the

run—-time sequencing of a program and the flow of control among the
programs that make up a programming system. This sequencing information
can be represented at various levels of derail. At the lowest level it
may be a trace of the statements executed by a program when run with a
particular testcase, or the sequence of branches executed by the
program. At a higher level, the actual program flows traversed by the
program may be collected or, at a still higher level, the dynanmic
calling sequence of procedures and subroutines in a programming system

may be monitored.

The technique for implementing eXxecution coverage analysis is the
same as that for statement—level analysis; that is, placing software
probes in the programs at the level at which monitoring information is
to be gathered. The added statements are simply invocations of run-—time
auditing procedures which record which procedure and which control
sequence or statement is being executed at the time of monitoring. A
post-processor can then reproduce the dynamic flow of control through a
single program or a group of programs at whatever level is desired.
This information 4is wuseful in determining which control flows and

procedures were exercised by whieh test cases as a guide to what testing

remains to be done.

4.2.5 Existing Methods And Procedures

We have looked at the types of methodology desirable for a com-
prehensive verification system in the preceding section. Below are the
methods and procedures, along with the companies creating them, which

are now in use for software verification

For the most part, software verification is still a manual
process. Tools and techniques exist, but this area of software engi-
neering is in its infancy. Most of the tools and methodologies have

severe restrictions or require highly-skilled persons to make their

application successful.

Requirements. Requirements state what a computer system should do from
the user's viewpoint. Manual systems exist which aid system decompo-
sition via graphical techniques (SADT from SofTech and AXES from Higher
Order Software) and which label requirements so the labels can be
inserted in the design and code (THREADS from Computer Sciences Corpor-

ation) for tracing requirements to the code.

Specification. At least two languages and tools exist for stating

detailed specifications (Requirements Specification Language - RSL -
from TRW and SPECIAL from SRI). Both provide a rigorous means of
stating specifications which can be used to detect inconsistencies.

Both are expensive to use and are best utilized on small programs only.

HIPO (Hierarchy plus Input-Process-Qutput) charts are a manual
means of stating software specifications in the context of program

structure.

4-6

Design. There are many design methodologies based upon decomposition,
structure, data relationships, and top-down and bottom—up development.
There are also systems and languages such as Process Design System (PDS
from System Development Corporation) and Process Design Language (PDL).

PDL is a control-structure keyword recognizer.

Functional and Performance Testing. Manual, functional, and performance

testing are assisted by deriving data from HIPO charts, using simu-
lations, obtaining execution-time intermediate-value printout, and
running stress or boundary tests. Boundary, or special value testing,
is a strategy which exercises a program using certain values important
to the control flow of the program. Predicates of logical expressions,
and values which activate one or more conditions in a complex logical
expression, are good candidates for special value tesing. Stress
testing requires that the tester manually identify areas in the program
which are critical to its function. These areas are then subjected to

intensive testing using special values and other methods,

Functional testing treats functional components of a program as
separate programs, with their own input, output, and processing require-
ments. Assertions can be used to determine if the requirements for each
of these functions are being met. Using assertions, the execution-time

behavior of these functions can be checked for:

. Inconsistencies between the specified and actual contents of
variables

° Time required to execute a function

° Contents of passed parameters upon entering and leaving a
function

) Changes in a function's behavior when the input values are

systematically changed {as in the case of General Research's

Adaptive Tester).

Structure-based Testing. This testing concept has been very popular for

providing a measure of testing compieteness, test data generation, error
location, and finding structural anomalies. There are a number of
automated tools which perform branch testing (RXVP, JAVS, FAVS, SQLAB,
and TAP from GRC, NODAL from TRW, PET from McDonnell Douglas, Test
Coverage Analyzer from Boeing) or execute user-specified sequences of

statements (SADAT from Kernforschungszentrum Karlsruhe GmbH).

Algorithms are being develcoped to circumvent the impossible goal
of testing all control paths in a program. Some of these techniques are
(1) identifying strongly-connected components of a directed graph
(Tarjan, Ramamoorthy), (2) partitioning the program graph into sub-
schemes which are single-entry/single-exit structures {Sullivan), (3)
identifying strongly-connected subgraphs which are single-entry/multi-
ple-exit, called intervals (Hecht and Ullman), and (4) partitioning the

program graph in terms of its iteration level, called level-i paths
(Miller).

Manual structure-based testing can be assisted by deriving

decision tables (Goodenough and Gerhart) and choosing input data
accordingly.

Structural anomalies such as dead code, potential infinite loops,

and infeasible paths can be determined by some current AVS tools (ATDG
from TRW, SADAT, JAVS).

Consistency Checking. The most common techniques used to determine the

consistency of variables and interfaces are:

° Adding assertions that define expected use (SQLAB from GRC,
ACES from UC Berkeley)

° Employing static analysis (AMPIC from Logicon, DAVE from
University of Colorado, FACES from UC Berkeley, RXVP, FAVS,
and SQLAB from GRC)

° Using data flow analysis to find uninitialized variables and
interface inconsistencies (DAVE, RXVP, SQLAB)

Test Data Generation. A great deal of research energy has been expended

on developing test data generators. So far, these systems (such as
ATTEST at the University of Massachusetts) are still research tools and
have had to back off from original goals. Other tools such as test
harnesses or the Adaptive Tester require input boundaries and invar-

iances between variables to be specified.

For manual test data generation, Howden suggests that input data
be chosen to reflect special values for the program. Ostrand and
Weyuker suggest deriving data in two phases based upon likely errors for
the particular program's function and likely errors for the control

structures used in the program.

Formal Verification. Automated formal verification systems (EFFIGY from

IBM, PROGRAM VERIFIER from USC/ISI, SID from the University of Texas at
Austin, SQLAB from GRC, SELECT from SRI) take user-supplied assertions
(called verification conditions) usually at each branch, and symboli-
cally execute them. The systems attempt to prove each verification
condition as it is symbolically executed. The process involves simpli-
fication of inequalities and, in the case of interactive provers, the
input of occasional rules to aid simplification. Formal verification is
still reserved for small programs. Most of the implemented systems are

based on LISP.

Program Modification. Tools which utilize a database system and save

interface descriptions or other such system~wide information can be
helpful to support program modification and maintenance activities.
Valuable information for these activities are module interaction
reports, detection of global changes, and local updates. Some of the
tools that provide this assistance are the Boeing Support Software, SID,
JAVS, FAVS, and SQLAB.

4~y

- o

T cennmd

Documentation, Automatically-generated reports which provide infor-

mation about program structure, calling hierarchy, local and global
symbol usage, and input and output statement location are very useful
during program development, testing, and maintenance. Most AVS tools

provide some or all of these reporting capabilities.

4.3 SOFTWARE TOOLS
GRC made an extensive study of software tools available today both
for COBOL and for other languages in order to obtain a balanced view of

the techniques and options that are offered.

COBOL is the most popular computer language in use today. There
are many tools available to the COBOL programmer and analyst. The tools
we investigated which were not applicable to COBOL were nevertheless

useful in providing new techniques to consider.

° There are a number of text-editors such as MENTEXT, Univer-
sity of Maryland's editor for the Univac 1100 series, and
DEC SOS. Some of the editors are powerful, others have full-
screen editing capabilities and program reformatting

features.

° Object-code optimizers such as CAPEX's OPTIMIZER are useful
tools which reduce core requirements, eliminate unused code,
reformat the compiler listing, and permit faster execution

time on IBM S/370 systems.

° Tools which assist in testing and debugging (CAPEX Analyzer/
Detector, FAVS, RXVP80, QUALIFIER) are available for certain

computer systems.

° Additional tools are test data generators (PRO/TEST,DATA-
MACS), instrumentation packages (QUALIFIER, FAVS, JAVS,
PET), and data cross-reference and documentation packages

(DAS, DCDII).

(g = e

S i1

Many of these tools perform worthwhile functions and serve a
selected market well. However, as we researched the tools, the follow-

ing disadvantages presented themselves:

] Most are oriented to IBM and IBM-compatible hardware, and

some are operating-system dependent.

° Some require modification of the software for system 'fit'.

] Few of the tools actually support and encourage structured
programming.

. There are many vendors, each offering a tool for a specific

function. Tool command languagés differ; obtaining a
comprehensive tool requires procuring many packages, and

learning many operating languages and methods of utili-

zation.

. Program debugging still requires extensive use of core
dumps.

° Most of the software tools which incorporate static analysis

and instrumentation testing have been developed for Fortran

or another scientific language, wusually at research
facilities (PACE at TRW, PET at McDonnell Douglas, FAVS and
JAVS at General Research). There are very few COBOL static

analysis or instrumentation tools.

Table 4.1 lists the tools we have examined, and in some cases used, in

the study.

Many of the non-COBOL tools seem to have originated as research
projects and, as a result, perform general program analyses which often
include building a database and a program graph. This broad base of
information allows these tools (with some overhead expense) to be

extended in capability.

4-11

T o

e o — +

Table 4.1

SOFTWARE TOOLS EXAMINED IN STUDY

TOOL
SYSTEM CEVELOPER LANGUAGE COMPUTERS CAPABILITIES OF TOOL
ACES UNIV. OF CA. FORTRAN €OC 6600 CROSS -REFERENCE
BERKELEY 184 360 ASSERT ION RANGE CHECK
UNIVAC 1108 CODING STANDARDS VIOLATIONS
DO LOOP VIOLATION
€oBOL OOMPUTER 008OL 18M, BURROUGHS REFORMATS DATA AND PROCEDURE DIVISIONS
REFORMATTER ASSISTANCE, INC. COC, HONEWELL,
STANFORD, CT NCR
DAS CGA COMPUTER COBOL 18M 360 AUTOMATED DATA CROSS-REFERENCING REPORT ING
DATA ASSOCIATES UNIVAC 1100 COPY TEXT AND LINKAGE SECTION
ADMINISTRATION ROCKVILLE, MD OROSS-REFERENCE REPORT (NG
SYSTEM
DATAMACS MANAGEMENT cOBOL 18M 360/370 TEST DATA GENERATOR
AND COMPUTER
SERVICES, INC.
MALVERN, PA
oco 1 CGA COMPUTER co80L 18M, 0OS, LAYOUTS OF FILES, RECORDS AND
DATA ASSOC IATES HONEWELL, GOOS WORKING STORAGE
CORRELAT 10N ROCKVILLE, MD UNIVAC, EXECS CROSS REFERENCE LISTING OF FILES
AND RECORDS AND DATA (TEMS
DOCUMENTAT ION ENTRY/EXIT POINT HISTORY W ITHIN
SYSTEM PROCEDURE D! VIS1ON
EASYTRIEVE PANSOPHIC SYSTEMS OS 18M 360/370 INFORMAT ION RETRIEVAL AND REPORT
OAK BRODK, 1L UNIVAC GENERATION SYSTEM TO GENERATE KEYED
SERIES 70 REPORTS FROM (NPUT FILES
FACES UNIV, OF CA, FORTRAN COC 6400 CROSS -REFERENCE
BERKELEY 18M 360 SET/USE VIOLATION
UNIVAC 1108 DO LOOP V|OLATION

COMMON BLOCK VIOLATION

Table 4.1 (CONTINUED)

1
i
H
i

STATIC ANALYSIS P

T T A

TOOL
SYSTEM DE VELOPER LANGUAGE COMPUTERS CAPABILITIES OF TOOL
FAVS GENERAL RESEARCH FORTRAN CDCE400
CORPORAT 10N VAX 11/780 BRANCH INSTRUMENTATION
SANTA SARBARA, CA UNIVAC 1100 AUTOMATED PROGRAM ANALYSIS DOCUMENTAT |ON
BRANCH EXECUTION COVERAGE
REACHING SET GENERATION
STRUCTURING FORTRAN INTO DMATRAN
FORMAT K AND A SOFWARE COBOL 1BM 360/370 AUTOMATED FORMATTING W ITH DATA AND
PRODUCTS PROCEDURE D!VISION |NDENTATION
DALLAS, TX EDIT CAPABILITY
JAVS GENERAL RESEARCH JOVIAL COC 6400 BRANCH AND STATEMENT EXECUTION COVERAGE
CORPORATION 93 HIS 6180 BRANCH AND MODU E TRAC ING
SANTA BARBARA, CA AUTOMATED PROGRAM ANALYS!S DOCUMENTAT [ON
ASSERTION VIOLATIONS
REACMING SET GENERAT |ON
JTIAVS GENERAL RESEARCH JOVIAL 1TEL AS/6 ONLINE ANC BATCH OPERAT ION -
CORPORATION 473 (IBM SYSTEM/370) STATIC AND DATA FLOW ANALYSIS
SANTA BARBARA, CA DEC SYSTEM 20 TEST HISTORY REPORTING
COC CYBER 175 PATH IDENTIF ICATION
BRANCH, STATEMENT, AND PATH EXECUTION
COVERAGE
BRANCH AND MODULE TRACING
AUTOMATED PROGRAM ANALYS IS DOCUMENTATION
ASSERTION VIOLATIONS
REACHING SET GENERATION
MENTEXT MENTEL, INC. 03 1BM/360/370 TEXT EDITING PROVIDES PROGRAM PREPARAT ION,
PALO ALTO, CA TESTING AND DOCIMENT PREPARATION SERVICES
FULL SCREEN EDITING CAPABILITIES
OPTIMIZER (11 CAPEX CORP CoBOL 1BM 3607370 OFTIMIZES COBOL OBJECT CODE
RBMOVES DEAD CODE, REFORMATS SOURCE COOE
PARAGRAPH TRACING AT ABEND
ABEND REPORT ELIMINATES SYSUDUMP
PACE ™ FORTRAN 18M 360 STATEMENT TYPE STATISTICS
COC 6400 STATEMENT (NSTRUMENTATION
UNIVAC 1108
PANVALET PANSOPHIC SYSTEMS OS 1BM 360/370 BUILDS AND MAINTAINS LIBRARIES OF SOURCE

QAK BROOK, IL

PROGRAMS, JCL, DATA. CAN BE USED TO BUILD
JOB STREAMS, TRANSFERS DATA SETS TO
OTHER LIBRARIES-ON-LINE CAPABILITY

Table 4.1 (CONTINUED)

— e o =

TOOL
SYSTB DE VELOPER LANGUAGE COMPUTERS CAPABILITIES OF TOOL
PET MCDCNNELL FORTRAN COC 6600,/7600 STATEMENT TYPE STATISTICS
DOUGLAS IBM 360/370 STATEMENT INSTRUMENTATION
HIS 6000
GE 600
PROTEST SYNEGETICS, CORP. COBOL 1BM 360/370 TEST DATA GENERATION
BEDFORD, MA
QUALIF IER COMPUTER FORTRAN STATEMENT TYPE STATISTICS
SOF W ARE COBOL STATEMENT INSTRUMENTAT |ON
AMALYSTS JOV 1AL DATA INSTRUMENTATION
ASSEMBLER
RXVP80 GENERAL 1FTRAN COC 6400/7600 AUTOMATED PROGRAM ANALYSIS DOCUMENTATION
RESEARCH FORTRAN 18M 370 BRANCH EXECUTION OOVERAGE
CCRP, VAX-11/780 CODING STANDARDS VIOLATIONS
LOOP VIOLAT!ONS
ASSERTION VIOLATIONS
SET/USE VIOLAT IONS
PARMMETER VIOLATIONS
REACHING SET GENERAT ION
SQLAB GENERAL FORTRAN CDC 6400/7600 DO LOOP VIOLATIONS
RESEARCH IFTRAN SET/USE VIOLATIONS
CORP, JOVIAL J3-8 CODING STANDARDS VIOLATIONS
PASCAL PARAMETER VIOLATIONS
VPASCAL BRANCH EXECUT ION OOVERAGE
AUTOMATED PROGRAM ANALYSIS DOCUMENTATION
SYMBOLIC EXECUTION FOR VER!FICATION
ASSERTION Y!0LATIONS
REACHING SET GENERATION
STANDARDS COMPUTER FORTRAN coc CODING STANDARDS VIOLATIONS
AUD1TOR SOFMW ARE coBOL COMMON BLOCK VIOLATIONS
ANALYSTS COMPAS S DO LOOP VIOLATIONS
TS0BOL SIGMATICS coBoL 1BM 360/370 AUTOMAT 1CALLY GENERATES 0080L
IRVINE, CA PROGRAMS USING STATEMENTS STORED
IN LIBRARTES. ALLONS EDIT CAPABILITY
750 18M 0s 18M 370 FULL SCREEN CONTEXT EDITING
SUPPORT AND W ITH MULTIPLE-SCROLL AND SPLIT SCREEN
STRUCTURED CAPABILITY. KEEPS LIBRARY ACTIVITY
PROGRAMM NG STATISTICS. MAINTAINS PROGRAM LIBRARIES
FACILITY WIT'- A MENU-DRIVEN INTERFACE TO LANGUAGE

COMP | LERS.

4-14

Tools created to assist COBOL programmers are generally smaller
software packages which address areas other than program verification.
There are tools to automatically create the COBOL statements which are
continually used in a COBOL program. This alleviates the tedious task of
typing in the wordy areas of a program, which are usually the same in
every COBOL program in that data processing department. When the code
has been created, there are tools to automatically reformat the printed
source code. The COBOL program, with the sections and paragraphs aligned
and indented, is easier to read. There are tools to create flowchart
pictures of the program logic, and tools to create cross-reference

listings of data elements.

COBOL has been the language of business. The emphasis has been
placed upon speed and efficiency of programming. Tools were developed to
assist the programmer in the task of completing programs in a short time
with the least amount of difficulties. Just recently, the need for
quality assurance tools for COBOL programs has been recognized, and
software verification tools to analyze COBOL code are beginning to be

developed.

CAVS will organize the most important functions of several tools
into one comprehensive software development aid; a unique package for
the COBOL language. CAVS is designed to be a portable system requiring

only one, easy-to—~learn command language. Table 4.2 illustrates these

advantages.

=

TABLE 4.2

; CAVS: AN INTEGRATED TOOL
1 o
; %
' o5 B e .
S B 2 T = T
4 £ B 2B a =
3 2 5 ZB B A
3 ® PROGRAM REFORMATTING X X
|
¢ ® STATIC ANALYSIS X X
E ° INSTRUMENTATION X X
° RUN-TIME ERROR ANALYSES X X
Y AUTOMATIC DOCUMENTATION X X !
* TEST ASSISTANCE X X
) STRUCTURED PROGRAMMING X

SUPPORT

3

i

$ 5 A SYSTEM FOR THE AUTOMATED VERIFICATION OF COBOL PROGRAMS

5.1 CAPABILITIES

ii The intent of Phase 1 was to study the most current techniques of
i program validation and testing, review available tools, develop new
b ideas and methodology, and design a COBOL AVS. With this information,
g, coupled with our evaluation of the project scope (with respect to
gé available resources: time, funding, and manpower), our outline of the

capabilities to be supplied by the COBOL AVS is given in this section.
A more detailed description is the CAVS Functional Description - Phase
ll

: The AVS will include six major kinds of software development 1

i tools: (1) static analysis, (2) instrumentation, (3) testing analysis,
((4) coverage assistance, (5) documentation and (6) reformatting. User

interface will be through both batch and interactive terminals. The

individual functions performed in each of these areas are described in

Table 5.1.

A coded program is first submitted to the COBOL language compiler,

which performs its syntactical functions. If errors occur, the program-

L
“

mer can make the corrections and resubmit the program to the compiler. ’

The next phase is program verification using CAVS, illustrated in Fig.

T

5.1. Any of the Static Analysis, Documentation, and Testing Analysis i
functions, or Instrumentation, can be chosen by the programmer. Errors
§ revealed by CAVS can be corrected at each step and the process can

continue until the software is ready for production testing. The user

retains control of the amount of testing coverage to be performed,

choosing from a selection of CAVS functions. The figure illustrates the

usual sequence of events to be followed in using CAVS.

Functional Area Command

Automat ic DOCUMENT

LIST

CALLS
FILES

COPYTEXT

L INKAGE

IDENT

DATALOC

TABLE 5,1,

SUMMARY OF CAVS FUNCTIONS

Description

Macro Command, Requests Defauit set of Documentation and Cross~-

Retference Reports.®

Lists

COBOL source, formats and indents data and procedure

division.

Cross

Cross

Cross
where

Cross

Cross
Shows

Cross

references calling and called programs,
references program and fiie Interaction

reterences program and copy text interaction, Shows
copy texts are usad within a systam,

references program vs. |inkage section contents.

roferences ail identifiers in the system by program.
where defined, set, used.

reference of idontifiers by their record position

and program. Shows fields defined, set, used, even where
identitier-names are different.

MMACRO commands are under | Ined.

Detault

No

Yes

Yes

Yes

Yes

Yas

No

These commands cause all default commands for that tunctional area to be
executed without having to request them explicitly.

S— — |
TABLE 5.1. (CONTINUED)
functional Area Command Description Default
Automatic PROF ILE Describe program intertaces, sizes, verb and 1/0 usage. Yes

Documentation

INDEX Index of reports generated and which programs are referenced Yes
in those reports,

4 ! Static Analysis ANALYZE Macro command, requests default set of static analysis reports, No
!
i STATIC General source analysis within a modute, or within each module Yes
CALLS Analyzes inter face between calling and called modules. Examines Yes 1

Vinkage sections, variables used, pictures of those variables.

MOVGCORR MOVE CORRESPONDING analysis. Checks corresponding data names for Yes
campatabile pictures.

REACHSET Lists source statements on path between two statements in a No
prog-am.

Pt

Functiona! Ares

Instrumentation

Test Analysis
and Assistance

Command

PROBE

TEST

COVERS INGL

COVERMULT!

EXTIME

DETLTIME

NOTHIT

SUMS INGL

SUMALL

TABLE 5.1. (CONTINUED)

Description
Inserts diagnostic source statements which monitor execution
contro! flow and time. Output from an instrumented program goes

to an execution trace tile.

Macro command, requests default test analysis reports of a
specitied execution trace file.

Shows program source statements used during execution of singie
test run,

Snows cumulative program source statements used during muitipie
test run.

Reports execution times of each invoked program unit.

Detai'ed timing analysis ot program behavior. Reports total
times by paragraph and section,

Shows p-ogram source, flags statements not hit by test case(s).

Summarize single test case, showing numbers of paths not hit,
percentages, exscution summary.

Summarize all test cases.

Detau!t

No

Yes

Yes

No

Yes

Yes

COBOL

One or more compilable units of Cobol
source code is input for processing
and analysis.

CAVS generates a directed graph of the
control structure. All syntax, semantics,

and structural information is stored on

a database. Additional or changed source code
causes an existing database to be updated.

Possible errors, warnings, and dangerous
programming practices are reported.

NO

Reports for program
documentation, debugging,
maintenance, testing and
retesting are produced.

PROGRAM ANALYSIS

TEST GOALS
ACHIEVED
?

Software probes are automatically inserted
for dynamic analysis of execution coverage,
counts tracing, and timing.

Program execution produces
file for analysis by CAVS.

Execution coverage, counts, traces,
and execution timing are reported
by testcase and by a set of testcases.

SOURCE
SOURCE TEXT
ANALYSIS,
STRUCTURAL
ANALYSIS
l STATIC
ANALYSIS
DATA FLOW
Branch sequences ANALYSIS
and test history
are reported.
COVERAGE
ASSISTANCE REPORTING
CORRECT
SOURCE INSTRUMENTATION
vES TEST EXECUTION,
DYNAMIC DATA
COLLECTION
ERRORS NO
FOgND ‘
EXECUTION
ANALYSIS

Have a specified percentage of
branches been executed by
cumulative testing?

INSTALL PROGRAM

Fig. 5.1,

Overview of CAVS

5-5

AN-56536

Generally, static analyses are performed first. Reports are
generated showing the results of those functions (outlined in Table
5.1). Once errors have been eliminated and the user is satisfied, the
program can undergo dynamic testing analysis. Software probes are
automatically inserted for dynamic analysis of execution coverage, for
tracing execution sequences, for counting execution of segments, and for
timing execution of segments. Program execution will produce a data
collection trace file for analysis by CAVS, and listings are generated

displaying the information gathered.

5.2 DESIGN
This section overviews the design particulars of CAVS. For a more

comprehensive ‘description, refer to the CAVS System/Subsystem Speci-

fication.

Once the needs of the user have been determined and the cap-
abilities of the software package identified, the most important task is
to create a design of the system. The design must demonstrate that the
tool (1) will operate correctly and satisfy the user's requirements, (2)
is written in language which is familiar and portable, (3) will execute
with economic efficiency and within reasonable execution times, and (4)
by -its design, is easy to modify to keep up with change and is adaptable

for enhancement.

The system's primary input is a collection of COBOL source text,
which is recognized, parsed, and stored on the data base (composed of
multilinked table structures). 1In this sense, it performs some of the
functions of a compiler, but for the most part its purpose and operation
are different. A compilable program is assumed, and therefore no syntax
error checking is done. Unlike a compiler, the CAVS stores the source
code in various representations (such as blank-delimited text form,
statement token strings, and graphical representations). Attributes of

the program (individual statements, parameters, symbols, etc.), will be

saved in the data base and reconstructed in modified forms such as with

testing coverage probes. The stored attributes are examined on a
program-by-program basis or across program boundaries in order to
evaluate the semantic consistency of the code or to generate summary and

documentation information about the program.

THE DATA BASE

The CAVS data base comprises the collection of program data in a
set of tables. The system is designed to handle large programs con-
sisting of many subroutines, with the potential for run-to-run retention
of data tables on auxiliary storage. The lafge data base is maintained
in random access €iles called libraries, with each library holding a
collection of tables. In core the working storage consists of allocated
blocks of storage which contain active module data tables. Data
transfers between the libraries and the working storage area, and

between the working storage and analysis program, are controlled by the

Library Manager system.

TABLE STRUCTURES
The tables that contain module information have a generalized
structure. Access to table information is made through a section of the

library manager called the access interface.

TOKENS

The functions of CAVS require manipulation of the COBOL source
text and in many cases involve accessing specific elements of text such
as variable names, keywords, operators, etc. Therefore CAVS stores text
on its data base by breaking the text into its smallest meaningful

elements (tokens).

COMMAND
The CAVS program is divided into a group of functional segments.

Similar or sequential activities are combined in a segment and the

5-7

activities and options are controlled by a set of segment commands. The
first word of each command signifies which segment receives the command.
Each segment contains a command recognition routine which processes each
command sent to the segment to determine which options and activities
are being requested.

STORAGE

The Nucleus or data base makes up the core-resident root of the
system although to minimize storage requirements, some nucleus routines
will be loaded into secondary storage until needed. Each of the
function segments reside in secondary storage until called and loaded by

the storage controller.

FUNCTIONAL SEGMENTS

The following is a brief description of each functional segment:

Command Decoding and Control: Process user input commands, output

interactive response, and successively return each command to the

overlay controller.

Initialization and Wrapup: Upon run initialization, open files,

initiate execution of the storage manager, and set various global
data; upon run termination, close files and (for batch mode)

produce report index.

COBOL Source Text Analysis: Read COBOL 68/74 source and perform

lexical scan, token recognition, symbol classification, and

structural pointer construction.

Structural Analysis: Build program graph, store branches, and

compute single-entry/single-exit reduction history used in data

flow analysis.

Supplementary Table Building: Build tables needed for module

dependence reporting and cross references.

Program Analysis Reporting: Produce selected reports at user

command.

g v . s " PR i . . _— o0 i e < T

H Instrumentation: Insert probes at program unit entries, exits,

branches (depending upon type of instrumentation selected); define

4 new testcase or end of all testcases.
Structural Testing Analysis: Analyze run—time execution trace

file, produce coverage and trace reports, and update test history

table.

Execution Timing Analysis: Analyze run-time execution trace and

'; produce timing report.

Print Services: Print the contents of specified database tables.

DESIGN METHODOLOGY

We entertained the idea of a new system design for the COBU'. AVS
because outwardly COBOL appears different from the languages for which
we have previously developed an AVS. Looking over the structure of the
language as it is translated into the assembler level, we decided a new

design would be unnecessarily expensive in time and effort. A more

effective plan would be to translate the FORTRAN AVS code into logically
equivalent COBOL, and then apply the necessary modifications so it
processes COBOL and addresses the testing needs of COBOL programs. The
available resources would be better utilized in improving our design,

testing and debugging the AVS, and implementing more features.

After translation of the data base routines from Fortran to COBOL,
the necessary ldentification, Environment, and Data Division sections
would be added. Most of the auxiliary, validation, and testing routines

would be redesigned to operate on COBOL code.

In order to create a COBOL AVS which is portable, CAVS will be
written in a subset of ANSI-COBOL 1974 which is compilable on the
Univac, Honeywell, and DEC computers (Appendix B). Because these three

machines have different system architectures, there are statements,

5-9

specifications and formats unique to each machine which cannot be
standardized. A variable front-end routine for each machine type will be
created to deal with these few differences and allow the main body of
CAVS to be identical for each system.

Figure 5.2 shows an overview of CAVS's design. It 1is similar to
FAVS in that it utilizes a command translator, language recognizer,
structure recognizer, and trace file decoder. COBOL tables will be used
instead of FORTRAN arrays to store all data. The data base analysis
components will be completely redesigned to analyze COBOL structures and

test for COBOL errors.

5.3 OPERATION

CAVS is designed with the user in mind. The design of the user
interface to the software tool is as importadt as the system/subsystem
design. Often, a valuable software system sits on the shelf because the
user cannot understand its operation, because the command language is
too wordy, difficult or ambiguous, and because the user's guide is

unreadable.

CAVS will operate in both batch and interactive modes. This
increases portability of the system and allows each user to determine
which is most convenient for his needs. The following examples give a
brief description of the system's operation in the batch and interactive
modes. For a more detailed description of the operational features of

CAVS, refer to the Functional Description.

Fog-L

” i
USER SOURCE TRACE INPUTS h
COMMANDS PROGRAMS FILES
-0
2
- 3
] :
DATA BASE
INTERFACE DATA FLOW C0BOL STRUCTURE TRACE FILE CONSTRUCTION
ANALYZER ANALYZER RECOGNIZER RECOGNIZER DECODING CONPONENTS
4
T
DATA BASE
DATA BASE |___ NUCLEUS | VIRTUAL SUFPORT
INTERFACE MEMORY COMPONENTS
1
']r'
DATA BASE
TEST REPORT| | ncrRuMENTATION| | PROGRAM STATIC COVERAGE ANALYSIS
GENERATION DOCUMENTATION ANALYSIS ASSISTANCE COMPONENTS

BATCH (INTERACTIVE > ENHANCED
REPORTS REPORTS (SOURCE :[OUTPUTS

Fig. 5.2. CAVS Design Overview

BATCH OPERATION

An example of a batch runstream to perform Static Analysis,

Documentation, and Testing Assistance for modules called MAINPROGRAM,
SUBl, and SUB2 stored in file " DMA*PAYROLL. " is as follows:

@RUN GRCRUN,ACCTNO/passwd,10,100,5
@ASG,A DMA*PAYROLL.

@ASG,A CAVS*VERSIONSO.

@ASG,A DMA*TEMPFILE.

@ASG,A DMA*PAYROLL.OUTPUT1
@ASG,A CAVS*ECL.

@ADD CAVS*ECL.

OPEN INPUT.

FOR MODULES = MAINPROG SUB1 SUB2
ANALYZE STATIC CALLS

DOCUMENT LIST FILES IDENT

TEST UNIT TIMINGS COVERAGE

@EOF

@FIN

INTERACTIVE OPERATION

CAVS interactive capability allows the user to create a job for
execution, using interactive techniques, when use of the batch facility
is not convenient. With the interactive system, the user responds to
questions on a screen menu. The user will be able to create a CAVS job

and execute the job while at the terminal.

After sign-on, a main menu appears and the user enters the type of
job processing he wishes to perform. Another menu, depending upon the
response, appears automatically. The user can request CAVS analysis,
browsing of previous CAVS reports, or printing of previous CAVS reports
stored on the library. If CAVS analysis is requested, the appropriate

menu appears and the programmer inputs the exXact tailored functions

5-12

e B -
T i e ——— _ — T S|
s H a 2l il Tttt - , i

A
pREEY

desired. The user can, at any time,

view the job runstream, or can
request “"help” information.

Before submitting jobs for execution, the programmer can direct

the output to the terminal screen or the system line-printer.

Figure 3.3 illustrates some of the options available to CAVS batch

and interactive users. Refer to the CAVS Functional Description for a

more detailed explanation of the interactive processing capabilities.

BRI AL LA S ™ L

(1) CAVS BATCH PROCESSING

REPORTS

CREATE A
BATCH JOB

CREATE A JOB
AND EXECUTE IT
INTERACTIVELY

VIEW
RESULTS ON

THE TERMINAL
SCREEN

- —

REDIRECT
REPORTS TO
SYSTEM PRINTER

i

STORE THE FILES

DON'T PRINT
RESULTS, BUT

FOR FUTURE
REFERENCE

PRINT PREVIOUS

CAVS ANALYSIS JOB
ON SYSTEM PRINTER

VIEW PREVIOUS
CAVS ANALYSIS JOB
ON TERMINAL SCREEN

(2) CAVS INTERACTIVE PROCESSING

Figure 5.3.

k - o —— s

CAVS User Options

5-14

6 ENHANCEMENTS BEYOND CURRENT STATEMENT OF WORK

6.1 CONTINUING NEEDS OF CAVS USERS

We believe that every organization that builds o£ maintains
software must be concerned with the need to improve productivity in
software development and maintenance. RADC and DMA recognize this need.
A study conducted by Planning Systems International, Incorporated,
analyzed the DMA software development environments. The goal of the
study was to develop a plan for establishing a "Modern Programming

Environment” in each DMA installation.

Part of that plan recognized the importance of tools such as CAVS,
and proposed methods of acquiring and installing additional tools, and
supporting their effective use. The proposed enhancements in this
chapter will make a significant contribution to the Modern Programming
Environment at DMA and help to improve the management and productivity

of the programming staff.
Table 6.1 summarizes the enhancements proposed for CAVS.

6.2 SUMMARY OF PROPOSED ENHANCEMENTS
Status Displays

The productivity of systems professionals and their management
must be increased. One approach is to make more information about
programs available to the staff. There are many tools that provide
information, so much that programmers can be inundated with data. The
problem is not so much one of not having information as one of not being
able to find it. CAVS should be supplemented with a comprehensive
on-line, interactive system which enables programmers to search,
examine, and logically manipulate information about their software
development activities. Managers should have access to status displays

and reports revealing who uses CAVS and to what extent.

.

*pa4unco pue pabbei; eq pjnom s,0109 PUR ¥3IiTV
S@ S{ONALSUCD YONg °S4OnJysuod euoud-iosse 4o ebesn pue sod|ydeud sood sbeyy

*SpJepuR{S UO|4R||esSUu|
Aq pedajnbas sypueyd ajessueb A||edjjewosne pjnoy *swesboid ojydesb sep)arouy
*swelboud 10800 9944-04109 ‘PONIONLS J0j Sipiey #O0LA |ed(ydaeae |y smeuq

*6ujangonuysed ojjewoqne 104 swesBoud Bujiedesd se)y)duyg
°10800 Petnyonuisun jo sjuewbes pew.sojsed Ajejesedes ‘jueseyod smoys

*sydesbesed powiojied u) opod +:mvc:vwg sind ‘s, 0109 sejeujw) |3

404 80JNOS SpewJoydy *eJnydnJys [014u0d wedBoud se|j||duys pue soz|uebioey
‘WOyL oSN Of MOY Pul SUO|4DUN GAYD 4NOQe UO|{RLUSWNDOP U | |-uQ

*swojqoud Bujuwesboud ojj100ds o) epep Buigoe|es pue

Bujuiquod ‘spaodes SAV) ©1d|4|NW WOl 4Ndino asMOIq Of JOSN SAYD SO|qeuy

*ssesoud ysey Bujunp iedesspooq pue seujsed se sealeg

*Aapue Aueuqy) SAYD UoEe UOj UOI4OR JO BSINOO 4xeu 4sebBns of saAv) se|qeuy
*SNie}S 4S84 Ji10y} pue Sa|npow O JOqWNU SMOYS “SAYD 40 afiesn sozjsewung

*dj0 ‘peyses ‘pezAjeur ‘pejuswnoop se|npow juedsed ‘se|npow 4O JOQUNU moys

Pinom she|dsiq *AJeuq)| SAVD 841jUS pUR SO|NPOW JO SNLRLS MOYS

uoj4dyuoseq

SINAWIONVHNE dES0d0dd
*T*9 IT14vl

402A |Ruy
seo(joedyd Buypoy

6uyyieyy
eunyonuys weubouy

eunydiy
MO(4 |Ou4UO)

Buyangonaysey
70800
IV1I0LNL
A4y)1qedey

19885
-pua-ydueeg

15399nS

shejdsig
juvowebeuey

AYOLS IH

sjuswesueyul
pesodoay

uo! et 41 pow pue
Buyunyonaysey
weubouy

J0ddng
aujiug pue
Bujssesouy puewsq

ealy
|eUO| §ouN 4

6-2

‘spJlepueis p/-10800 ‘89-10800
WOy pOLRUIWY IO SPJOMASY YLiM SO0 |RIP JOP|O SSBd0J4d ~ ST080D 410 [

swoysAs Bujjeaedp ‘j0u4uoy ‘pueumso] J0p poBielq AJRLLIIIW = SOTWMM L]
*10800 40 side|e|p |euO|4|ppe ssed0.d

O} SAVD 4O SuO|4ouny SisAjeue pue uoj}jejuewnsop ‘uotijubodses pusyxy
*u01 Aeyeq weuboud

inoqe sefessew Josse pue sdjjsoufie}p osw)i-uoiindexe saonpouy

*shejuero Bu).inbeus swedbBoud Buibbngep up sissy
*sAejuero jo abesn pue jouguod sienjeny coainyesy uojjejusuwbes yo esn ezh jeuy
sdoo| ejiuljuy 3|dw:s U0} jse} o4 soshjeue puedxy

*04e ‘sapeubdn
‘SUO|S4BAUOD JBpUlYy Aew yoiym Spewuoj Buljesedo ‘SounieO) BOUSIS4BU-SSOUD
‘suo|jeledo puepueis-uou pue juapuedep-welsAs ‘seueu |eidads 45|17

*suo|jesedo wody aflim ‘ofu; peadt ul pesn Jo sesnh Aq pebbe|y seeue
obeuoys Buiyaom Uoj pue 5,4 404 sinoAe) piodes jo uojjeasusd o) jewoiny

*SOUDLINS |RUIBLXD

‘siojoweled ‘spueweilys ||ed ‘sjpewdoy o])4 “‘se|l} ‘uojjoes ebewyuy
Uo | 4RJUBWND0Q SBQIJOSE(J °*SO|INPOW JOULO Ui|M SBDORJJBJU| SOZ | eumng

uot4dyiudseq

(QANNIINOD) °T°9 FIGVI

SEUSLUOY JO 3|QL | |ENS|4,

3-70800
‘$70800 PiO
‘500N mM 82 jubodey

SNO 1 1Y3SSY
70800

IN3W93S

JZAIWNY

WV103dS

1Naavi

JOVIYIUNI

juswedueyuz
pesodouy

sydoulelq
70800

4uswdo|anrag
wesbouy

sisAjeuy Jj4eyg

Uo| $e4UsWNI0(
J1jewony

oy
{euo) ouny

Tutorial

Training of new employees is expensive and in times of high
turnover it can be almost impossible. Many installations recruit people
from user departments for positions in the svstems development area.
While this process provides employees with firsthand knowledge of user
departments, it also means more training is required to produce a good
systems professionmal. As part of the comprehensive on-line system, we
propose that CAVS be equipped with a tutorial component which would

guide novice users and supplement the knowledge of experienced users.

Automatic Restructuring and Charting

Preserving an investment in old software while introducing modern
programming techniques is very difficult. As more experienced program-
mers are promoted or leave an installation, the number of people who
understand and can quickly fix old, GOTO-ridden programs declines.
Automatic restructuring of old programs would enable CAVS users to
improve the readability and maintainability of their programs, while
preserving the integrity of their systems. This process could be
supplemented by automatic charting programs to produce program structure
charts and visual tables of contents (VTOCs). These VIOCs document the
overall control structure of GOTO-free programs. These tools could
reduce the cost of maintaining, improving, and documenting COBOL

systems.

Conversion Support

Upgrading an installation's computer or operating system is
frequently a painful task. While improvements in machine efficiency or
operating system capabilities are the eventual results, converting old
programs is time-consuming and error-prone. Economic benefits to be
gained from using a data base management system or a more modern
compiler must be weighed against the cost of conversion. By enabling
CAVS to recognize old dialects of COBOL, Government installations could
use CAVS documentation, restructuring, and static analysis features to

upgrade large volumes of old, non-standard COBOL programs.

6-4

PRSP e v

COBOL Assertions

Assertions are statements which are added either manually or
automatically to monitor the execution-time behavior of a program.
Their most valuable function is the ability to state what the expected
behavior of a program should be, and then issue diagnostics when an
error condition is detected. They are distinct from regular logical and
input-output statements in that their operation can be easily switched

on or off.

CAVS assertions would be coded with COBOL-like statements, and
translated by CAVS into valid COBOL.

WWMCCS COBOL

CAVS can be modified to recognize other specialized diale. s of
COBOL such as WWMCCS. WWMCCS 1is implemented on Honeywell computers,
with an operating system written in a language very much like COBOL. A
WWMCCS implementation of CAVS would be able to analyze the WWMCCS
operating system and applications that run oun it. Automated tools for
testing and increasing the reliability of this system should be de-

veloped.

Interaction of CAVS with FAVS

FAVS, the FORTRAN Automated Verification System already installed
at RADC and DMA, performs most of the functions for FORTRAN and DMATRAN
programs that CAVS will do for COBOL. By enabling CAVS and FAVS to talk
to each other, systems which use both of these languages could be

verified in ‘a more comprehensive and thorough manner.

6.3 CHARACTERISTICS OF PROPOSED ENHANCEMENTS

These enhancements are grouped by functional areas similar to the
existing functions of CAVS. A summary of the enhancements is shown in
Table 6.1. All features would be implemented for on-line users; control

would be by means of menus. For automatic restructuring of large

o
LR piied: - 2

JUFRIEIPINES &

programs, and for program graph analysis, the job control language could
be produced on-line, but actual execution should take place in batch
mode. Users could print text from the tutorial, but on—line access to
the same information would result in great savings in programmer time.
Allowing users to examine CAVS output at the terminal and print only

what was necessary would also reduce the volume of paper produced by
CAVS.

6.3.1 Demand Processing and On-line Support

CAVS on-line users will be able to build batch jobs or to execute
all CAVS functions on-line, in "demand mode.” While this approach pro-
vides usérs with access to the most commonly needed programming infor-
mation, the problem of how to help the programmer use and manage that

information should be addressed. CAVS can be made intelligent enough
to:

. Track the progress of modules thtoﬁgh the system

) Report their status to users and management

. Suggest courses of action

° Explain what happens when a particular course is selected
] Search and manipulate CAVS report output in ways tailored to

a specific user-defined problem.

All of these functions should be available to on-line users.

HISTORY is a proposed system-wide data logging function. It would

record:
. When modules were added to a library
. How many versions of a module had been added
. If and when a module was analyzed, documented, instrumented,

or tested

° Which users and projects were actually using CAVS, and to

what degree.

Status displays for managers and programmers would reveal the
current state of program development for an entire project or for a
single program. How the tool was actually used could then be more
accurately determined. CAVS should collect enough data about its own
behavior to guide managers and programmers in the most effective use of
the tool. Figure 6.1 illustrates a proposed project library overview
display, showing, in CAVS terms, the number of modules at each stage of
program development. Their percentage of the total modules in the
project library would als> be chown. Information about how und when

CAVS had processed a single wmodiele would be shown on a displav like
Figure 6.2,

8,0 PROJECYT LIBRARY OVERVIEW PAGE 1

PROJECT LIBRARY CREATED 01 MARCHB80 10:02 NUMBER PERCENT

PROGRAMS IN LIBRARY 20

OTHER MODULES IN LIBRARY 8

PROGRAMS WITH ANALYSIS COMPLETED 10

PROGRAMS WITH NO ANALYSIS ERRORS 8
PROGRAMS WITH DOCUMENTATION GENERATED
PROGRAMS WITH PROBES INSERTED
PROGRAMS TESTED AND ANALYZED
PROGRAMS CHANGED SINCE LAST REPORTS PRINTED

COMMAND ~—o

Figure 6.1. Project Library Overviuw bDisplay

e e ——— B

B,S MODULE STATUS PAGE 1

MODULE: DMACOBOL TYPE: COBOL DATE

TIME

COUNT COMMENT

ADDED TO LIBRARY 02MARS0 12:20

DOCUMENTATION CREATED 02MARS0 12:28

LINES

PROGRAM ANALYSIS COMPLETED 02MARS0 12:40

SEVERE ANALYSIS ERRORS 02MAR80 12:40 0 ERRORS
WARNING ANALYSIS ERRORS 02MARS0 12240 3 WARNINGS
PROBES INSERTED 03MARS80 14:21 §50 BRANCHES
CUMUL. % PATHS TESTED 0 PERCENT

COMMAND —

Figure 6.2. Status Display for One Module

Suggestions and Guidance

CAVS could use its HISTORY information to suggest courses of
action to on-line users. On-line users are already guided through a
work cycle. Program development also follows a predictable cycle of
coding, analyzing, testing, and documentation. CAVS could look at a
module's status and propose what actions should be done next. In Fig.
6.3, for example, CAVS has been asked to suggest actions for GRSCALC, a
module which is already the object of a status display. After checking
HISTORY for GRSCALC and for the project library, CAVS suggests reviewing
errors found in GRSCALC. In this example, alternatives based on what is

known about other modules (in the project library) are also presented.

6-8

8,S MODULE STATUS PAGE 1

MODULE: GRSCALC TYPE: COBOL DATE TIME COUNT COMMENT

*-PRIORITY---SUGGESTION

1 BROWSE SEVERE ANALYSIS ERRORS: GRSCALC, DISCALC
2 BROWSE WARNING ANALYSIS ERRORS: GRSCALC

3 FLAG WARNINGS AS OK: GRSCALC, RATELKUP

4 BROWSE STATUS OF NEW MODULES: DISCALC

5 PUT PROBES IN: RATELKUP

L] L]

TO RETURN TO PREVIOUS DISPLAY, HIT RETURN.
TO ACCEPT SUGGESTION, ENTER PRIORITY NUMBER, HIT RETURN.

COMMAND —= 1 (RETURN)

Figure 6.3. CAVS Suggestion Capability

SUGGEST and HISTORY would relieve experienced programmers of much
of the bookkeeping done during development and maintenance. Inexper-
ienced programmers and new CAVS users could become productive more
quickly. If the suggestions were accepted, CAVS could begin executing
the function immediately or generate a job to execute the function in

batch mode.

CAVS programmers must now do at least three things during the
course of solving a problep: determine what reports contain data they
need, produce the reports, and extract the necessary information.
SUGGEST and TUTORIAL capabilities can help in the first two activities.
Adding special logic capabilities to CAVS would make the last task much

eagsier. We propose equipping CAVS with programs which scan its own data

v
)
|
|
I
|
v

base and recognize commonly-used COBOL constructs and user—created data

items. This would not be a text searching function, something that
could be done with a text editor, but a search based on the logical

properties of COBOL programs. The LOGIC processor could then:

o Extract data sets of data names, file information, and COBOL
verbs.

® Sort and merge extracted data sets in ways specified by the
programmer.

) Create new data sets which represent the logical inter-

section of two or more CAVS reports. For example, a list of
all CALLs and a 1list of identifiers could be merged to

produce a list of all CALLs which reference those identi-

fiers.

° Save and delete ihe data sets created by the LOGIC pro-

cessor.

6.3.2 Automatic Restructuring

GRC's Fortran Automatic Verification System contains a function
for automatically restructuring FORTRAN programs to eliminate GOTOs.

There are several problems with the restructuring procedure as it now

exists:
° Automatic restructuring without additional human input
produces an equally bad program without GOTOs.
] Restructuring a program causes documentation of the old
program's internal logic to become obsolete.
] . Restructuring large programs is time-consuming and ex-

pensive.

CAVS should provide restructuring for COBOL programs, but (based

on the experience of users at DMA and GRC) we feel an improved, cost-

:
|
I
E
]
{
.!
|
:

effective restructuring module can be built. It should provide these

services:
° Automatic analysis of existing program structure.

. Easy-to-read program graph reports. These would show how to
break a large program into discrete, easily understood (by

people) and easily structured (by computer) chunks.

° Error and diagnostic reports. Any COBOL constructs that

render the program unstructurable would be reported.

° Automatic restructuring of COBUL source programs. CAVS
would be able to restructure any COBOL dialect it could

recognize.

® Automatic chart generation, Documentation (VTOCs .:4/or
flowcharts) for newly structured programs could be generated
mechanically. Cost of documenting these new versions of

well-tested programs would be reduced.

6.3.3 Automatic Documentation

CAVS is designed to be portable across computer models and
operating systems. Its automatic documentation modules coacentrate on
the portable portions of COBOL programs. But information about non-
portable language constructs, file structures, and program interfaces
can also be 1m§ortant. During conversion from one computer to another
or one operating system to another, knowledge of these non-portable
system characteristics is vital. Conversions can be simplified and
expedited when this information is extracted and presented automa-

tically.

INTERFACE is a proposed report that summarizes the interface
characteristics of a COBOL program. It would identify the following, on
one page if possible:

) File name and external file code

T

[

° File organization and format

° CALLs to other modules p
; . Information received from and passed to the operating system

] Linkage section variables and their attributes

e Presence or absence of system—dependent constructs, €.8.,

DECLARATIVES, FILE-STATUS, etc.

o atn

INTERFACE would conveniently organize and present how COBOL programs

communicate with the host operating system and with each other.

LAYOUT is a function requested by the staff at DMA. This option
would create record layouts from COBOL file descriptions (FDs) and from
Working Storage areas. It could be extremely useful when working with
utilities which reference data items by location instead of variable-
name. LAYOUT would determine the size and physical location of each i
field in a record from the field's COBOL picture. For each file and !
related Working Storage area, LAYOUT would show:

File name and external code ;
File organization and format
Field name position r
Field characteristics

Any overlapping or redefined identifiers

Where used in the system (optional)

SPECIAL is a proposed function which could audit programs for
non-portable and non-standard language constructs. Unlike the FIPS
flagger, which 1is available for. some compilers, SPECIAL could be
tailored to an installation's needs. While INTERFACE provides a
high-level summary of interface characteristics, SPECIAL would flag

these items in the source. SPECIAL would be of great value in moni-

toring the work of contractors and new programmers who do not adhere to

or do not know a shop's coding standards.

f 6-12

Upgrading of programs written in pre-1968 COBOL dialects could be

simplified through the use of CAVS, Program profiles, the proposed
INTERFACE and SPECIAL reports, and the restructuring function could be

used to upgrade and convert old programs.

6.3.4 Static Analysis

Research on methods of static analysis will continue throughout
the CAVS development. Infinite loops are a common programming problem;
they waste computer time and are a common error of novice programmers.
CAVS now has some capabilities for discovering graphical loops; addi-
tional research may enable CAVS to detect more complex, logically

infinite loops.

Neither the Univac 1100/80 series nor the Honeywell 6000 series
provides virtual memory. In order to execute large COBOL programs, they
use a segmentation feature to break programs up and execute them in
pleces to reduce the amount of memory required. SEGMENT is a proposed
CAVS feature which would analyze a program's control structure and
identify sections that -are good candidates for segmentation. This
feature could be used in conjunction with the Navy's segmentation tool
to improve the performance of large programs on machines without virtual

memory.

6.3.5 COBOL Assertions

Agsertions are logical expressions which may be either true or
false, but are expected to be true. If these expressions are not true,
the condition 1s known as an assertion vioclation. Assertions are used
primarily for two purposes: to state formally what a program should do
(or not do), and to monitor the program's behavior during execution.

When used consistently and efficiently, assertions can simplify the

testing and debugging of programs.

R Lok

CAVS users should have the option to put assertions in their
source code, and then have CAVS translate them into valid COBOL. CAVS
would support logical assertions (which evaluate a user-defined logical
expression and take action when that expression is false) and also
support input-output assertions (which monitor values read into, written

from, or passed to a program).

Most computer manufacturers provide some assertion-like capabil-
ities with their COBOLs. But these statements are part of the source
program and are not easily removed. CAVS assertions, on the other hand,

may be switched on or off at compile time.

CAVS users would be provided with a compile procedure which first
passes their source to the CAVS assertion processor. At that time, they
will have the option to:

° Switch the assertions on, by directing CAVS to translate
them into valid COBOL

. Switch the assertions off, and have CAVS mark them as
comments so that they remain in the source code as documen-

tation

) Switch the assertions off, and remove them from the source

code

6.3.6 WWMCCS COBOL

The Government has invested over nine years and significant
resources in the WWMCCS* operating system and resident software, A
special dialect of COBOL was also maintained for WWMCCS, which is imple-
mented on Honeywell 6000 series computers. CAVS should be modified to
provide WWMCCS programmers with tools to analyze, document, and test
their programs more effectively. Specifically CAVS would be modified

to:

* World Wide Military Command and Control System

6-14

S e A e A T

. Run on WWMCCS architecture and operating systems
° Recognize WWMCCS COBOL

. Produce all CAVS reports and displays in formats suitable
for WWMCCS hardware

6.3.7 CAVS and FAVS Compatibility
DMAAC and DMAHTC already have a GRC-developed tool for FORTRAN
users, FAVS. FAVS and CAVS will perform many of the same functions, but

each tool is restricted to dialects of one language. Each tool provides
a permanent data base which contains descriptions of source text and
testing history. (In CAVS terminology, this is the project library; in
FAVS terminology, it is a restart file.) GRC will implement CAVS, and
modify FAVS, so that:

. FAVS can process and update a CAVS project library.

. CAVS can process and update a FAVS restart file.

. FAVS can process trace files written by instrumented COBOL
programs.

[CAVS can process trace files written by instrumented FORTRAN
programs.

CAVS and FAVS can then be used to analyze, test, and document
programs which contain both COBOL and FORTRAN modules. i

A system containing both COBOL and FORTRAN modules would be

verified as follows:

° CAVS would statically analyze, document, instrument, and
reformat COBOL modules and add information about them to a

project library (restart file).

° FAVS would statically analyze, document, instrument, and
restructure FORTRAN modules and add information about them

to a restart file (project library).

6-15 i

. Either CAVS or FAVS would be used to produce test coverage

reports resulting from execution of instrumented modules.

[Either CAVS or FAVS would be used to update the testing

history information on the project library (restart file).

e Either CAVS or FAVS would be used to obtain source text
listings and system~wide documentation regarding entry

points, externals, global variables, and file usage.

No significant changes are required to the CAVS Functional
Description or CAVS System/Subsystem Specification to accommodate this
compatibility. On the other hand, FAVS will require significant
additional effort in order to upgrade the FAVS restart file, instrumen-
tation processing, and test coverage analysis. In order to insure trace
file compatibility between CAVS and FAVS, only full word integer data
will be written to trace files by instrumented routines. Since the CAVS
project 1library and FAVS restart file wust contain at 1least some
character data in addition to full word integer data, it may be more
difficult to achieve compatibility in this area. If character data
written by a COBOL program cannot be read by a FORTRAN program (or vice
versa), it may be necessary to use both COBOL or both FORTRAN routines
to read and write the project library in CAVS and the restart file in
FAVS.

The following features will be added or enhanced in FAVS.
. Parameter checking for calls to COBOL routines.

° Relative organization for the FAVS restart file (it cur-
rently 18 a sequential file in FAVS and a random file in
CAVS).

° Updating in place of a restart file or creation of a new

copy (similar to CAVS).

) Inclusion of source text, structural information, and
testing history on the restart file (for compatibility with
CAVS).

° More flexible and efficient instrumentation of FORTRAN
source (as well as compatibility with COBOL trace files).

. Improved test coverage and test history reports (oriented to

the user's original source code as in CAVS).

. A menu-driven interactive interface for compatibility with

CAVS use.

Parameter checking for calls to FORTRAN routines will be added to CAVS.

.
3
1
i
1
t

7 BIBLIOGRAPHY

Alberts, D., "The Economics of Software Quality Assurance”, Proceedings
of COMPSAC 77, Computer Software and Applications Conference, November

1977, p. 222.

Andrews, D. M., Benson, J. P., Advanced Software Quality Assurance,

Software Quality Laboratory User's Manual, General Research Corporation,

CR-4-770, May 1978.

Benson, J. P., et. al., Software Verification: A State-of-the-Art

Report, GRC, CR-1-638, March 1978.

Boyer, R. S., Elspas, B., Levitr, K. N., Select--A System for 1l:sting

and Debugging Programs by Symbolic Execution,” Submitted to the 1975

International Conference on Reliable Software, April 1975.

Brooks, N. B., Gannon, C., JAVS, Jovial Automated Verification Systenm,

Vol. 3, General Research Corporation, CR-1-722, December 1976.

Brooks, N. B., Gannon, C., JAVS Jovial Automated Verification System,

Vol. 2, General Research Corporation, CR-1-722/1, June 1978.

Brown, J. R., Lipnow, M., "Testing for Software Reliability, Proceedings
of COMPSAC 77 Computer Software and Applications Conference, November

1977, p. 21.

Clarke, L. A., "A System to Generate Test Data and Symbolically Execute

Programs” IEEE Transactions on Software Engineering, Vol. SE-2, No. 3,

September 1976.

Fischer, K. F., "Software Quality Assurance Tools: Recent Experience

and Future Requirements,” Software Quality and Assurance Workshop, San

Diego, November 197&.

Gerhart, S., Yelowitz, L., "Observations of Fallibility in Applications
of Modern Programming Methodologies™, Proceedings of COMPSAC 77 Computer

Software and Applications Conference, November 1977, p. 86.

Glass, R. L., Real Time Software Debugging and Testing: Introduction

and Summary, The Boeing Company, September 1979.

Holden, M. T., "Semi-Automatic Documentation of B-1 Avionics Flight

Software Global Data,” Naecon 1978 Record.

Howden, W. E. "Effectiveness of Software Validation Methods," Infotech:

Software Testing, Vol. 2, 1979.

Howden, W. E., "Reliability of the Path Analysis Testing Strategy",
Proceedings of COMPSAC 77/ Computer Software and Applications Conference,
November 1977, p. 99.

Howden, W. E., "An Evaluation of the Effectiveness of Symbolic Testing,"

Software - Practice and Experience, Vol. 8, 1978.

Howden, W. E., "Theoretical and Empirical Studies of Program Testing,"

IEEE Transactions on Software Engineering, Vol. SE-4, No. 4, July 1978.

King, J., "Symbolic Execution and Program Testing", Proceedings of

COMPSAC 77 Computer Software and Applications Conference, November 1977,
p. 191. ’

Miller, E. F., Jr., Methodology for Comprehensive Software Testing,

General Research Corporation, CR-1-465, February 1975,

Miller, E. F., Jr., Paige, M., Bendon, J., Wisehart, W., "Structural
Techniques of Program Validation", Proceedings of COMPSAC 77 Computer

Software Applications Conference, November 1977, p. 179.

2o, 4PV ¥

P
!
3
1

i
.
H

Miller, E. F., Jr., "Toward Automated Software Testing: Problems and

Payoffs”, Proceedings of COMPSAC 77 Computer Software and Applications

Conference, November 1977, p. 16.

Moriconi, M. S., A System for Incrementally Designing and Verifying
Programs, Vol. 1, USC/Information Sciences Institute, November 1977.

Ramamoorthy, C. V., Ho, S.F., "Testing Large Software with Automated

Software Evaluation System”, Proceedings of COMPSAC 77 Computer Software

and Applications Conference, November 1977, p. 121.

Stucki, L. G., et al, Software Automated Verification System Study,

McDonnell Douglas Astronautics Company, January 1974.

"SURVAYOR, The Set-Use of Routine Variables Analysis Program,” TRW
Brochure, 1975.

APPENDIX A
MATERIAL REFERENCED IN PHASE 1

The following documents were referenced in Phase 1 or will be used

in the coding implementation of the AVS in Phase 2.

Documents Describing the Implementation Environments

TITLE VENDOR'S NUMBER

1. VAX/VMS Command Language AA-DO23A-TE

User's Guide

2. VAX-11 COBOL-74 AA-CY85A-TE

Language Reference Manual

3. VAX-11 COBOL-74 AA-CY986A-TE

User's Guide

4, VAX/VMS RMS AA-DO24B-TE

Record Management Services

5. Honeywell General Comprehensive DD19D
Operating Supervisor (GCOS)

6. Honeywell Control Cards DD31C
Reference Manual (GCOS)]

7. Honeywell Standard COBOL-68 DEL7

Reference Manual

Reference Manual

8. Honeywell Standard COBOL-68 DE138 ‘

. User's Guide :
9. Honeywell Standard COBOL-74 DEO1 |

|

i

10. Honeywell Standard COBOL-74 DEO2

User's Guide

>;' 11. Sperry Univac 1100 Series UP-4144

Operating System Programmer Reference

i

12. Sperry Univac 1100 Series UP-8582
ANSI Standard COBOL (ASCII) - 1974

13, Sperry Univac 1100 Series UP-8584
COBOL (ASCI1) Supplementary Reference

s i i S VT —— T

i Documents Referenced During the Research Phase

REFERENCE/
TITLE REPORT NUMBER
1. JOVIAL Automated Verification System - RADC
JAVS Technical Report TR-77-126 :
? ‘ Reference Manual {
i
' 2. FORTRAN Automated Verification System RADC %
FAVS User's Manual TR-78-268
3. COBOL Instrumentation Packaage (CIP) NARDAC
For the Honeywell 6000 88-50028
TN-02
4, COBOL Instrumentation Package (CIP) NARDAC
For the linivac 1108 88-50002B
TN-01
5. ’ JAVS Technical Report, Volume 3 GRC
Methodology Report CR-1-722
6. JOVIAL J73 AVS GRC
Part I - Technical Proposal DP-Y874
7. SID ~ System for Incrementally UscC
Designing and Verifying Programs ISI/RR-77~65
8. COBOL Segmentation Analysis Package NARDAC
for the Univac 1100 Series Computer 9127064

TN-03

.

Documents Referenced During the Research Phase (continued)

REFERENCE/
TITLE REPORT NUMBER
9. Static Profile and Dynamic Behavior of
COBOL Programs
SIGPLAN Notices Vol. 13, No. 1, April 1978
3 10. A Model for Estimating the Number AFIT
3 of Residual Errors in COBOL Programs. C1-77-97
Cecil E. Martin, Ph.D. Thesis.
11, The Verification of COBOL Programs SRI 3967
U.S. Army Computer Systems Command
Technical Documentary Report
L. Robinson, M.W., Green, J. M. Spitzen.
12, DATAPRO Directory of Software
DATAPRO Research Corporation
1805 Underwood Blvd., Delran, N.J. '
13. CAPEX Optimizer III: Analyzer User Guide $02-1077~
Capex Corporation, Phoenix, AZ 135-(03-0979)
33 14, CAPEX Optimizer III: Detector User Guide $02-1077~
‘ Capex Corporation, Phoenix, AZ 136-(03-0979)
15. COBOL Optimization Techniques SMG-0676-
Capex Corporation, Phoenix, AZ 39(03-0379)

16. Structured ANS COBOL, Part 1
Paul Noll

Mike Murach and Associates, Inc., Fresno, CA

17. Structured ANS COBOL, Part 2
An Advanced Course
Paul Noll

Mike Murach and Associates, Inc., Fresno, CA

A-3

Documents Referenced During the Research Phase (continued)

REFERENCE/

TITLE REPORT NUMBER
18. MRI System 2000/80

Procedure Language Feature - COBOL

MRI Systems Corporation
19. DMA Programming Support Library

Structured COBOL Precompiler, Vol. 3
20, Advanced Software Quality Assurance - GRC

Software Quality Laboratory User's Manual CR-4-770

21, Data Correlation and Documentation System (DCD)
CGA Computer Associates
Rockville, Maryland

22, Data Administration Systems (DAS)
CGA Computer Associates
Rockville, Maryland

A-4

APPENDIX B
COBOL IMPLEMENTATION SUBSET

This Appendix discusses the subset of COBOL to be employed in the
coding, testing, installation, and maintenance of the COBOL Automated
Verification System. CAVS is to be installed on the Honeywell Series
6000 at Rome Air Developent Center, and on the Univac 1100 Series
machines of the Defense Mapping Agency. It will first be coded and
tested on the Digital Equipment Corporation VAX 11/780 at General
Research Corporation. All machines support full ANS COBOL-1974 ASCII
compilers, and CAVS will use them.

In each computer's user manuals there is a method of identifying
those language constructs which are extensions of the ANSI (OBOL-74
standard. CAVS 1is designed not to require these computer-specific
language extensions. If, however, using an extension would signi-
ficantly improve the performance or utility of CAVS on a particular
machine, it will be used. GRC will first request the approval of the
contracting agency. Any such code will be isolated in subprograms

wherever possible.

There is one major exception to the above restriction. CAVS is
based on a system originally written in FORTRAN, that makes extensive
use of FORTRAN COMMON blocks. CAVS execution speed would be severely
reduced if an equivalent construct were not available for COBOL. Since
CAVS will function primarily as an on-line program, deviation from the
ANS Standard COBOL is justified.

VAX~11 COBOL supports a construct like COMMON, called EXTERNAL.
The Honeywell Series 6000 Standard COBOL supports a similar construvct,
called LABELED COMMON. The Univac 1100 Series COBOL supports a
COMMON-STORAGE SECTION also, although its properties and syntax differ
from those of both VAX and Honeywell implementations.

This Appendix will use a format similar to the Univac ASCII COBOL
Programmer's Reference. The implementation subset will be described in

numbered sections, in the following order:

1. General concepts
2. Major omissions from ANSI Standard COBOL
3. Identification division

t 4, Environment division

1 5. Data division

6. Procedure division
7. Table handling
1 8. General 1/0 considerations

9. Sequential 1/0
10, Relative I/0
11. Library
12, Debug

13. Inter-Program Communication

Paragraphs within these standards will be numbered to simplify

reference to a specific standard.

e B.1 GENERAL CONCEPTS
1. - CAVS will use the ASCII compilers for all three implementations.

Characters stored on disk, and characters used in communication
between calling and called programs, will be in ASCII format.
Numeric data will be almost entirely full-word binary integers.
Numbers used for reporting, diagnostic, and display purposes will
be moved to the appropriate DISPLAY-usage ASCII fields.

2. Comments take three forms in COBOL:
. An asterisk in column 7 is the standard comment character.
) A "D" in column 7 can be either a comment or an indicator of

debug statements.

PN

B~2

. ! RN U LB ROED . - Ao, RO 00 . : o ——

T —————- ~———

B.2

B.3
1‘

) Certain keywords delimit an entire paragraph of comments.

CAVS will use the asterisk and the "D" to define comments.
DATE-COMPILED will be used to insert the compile date 1in the

source listing.

No other methods of delimiting comments, such as "REMARKS"” in the
Identification Divisjion and "NOTE" in the Procedure Division, will

be used. These have been removed from the 1974 standard.

CAVS must analyze itself during the self-test portion of its
installation. This capability will also be used to scan for
non-portable language constructs which would prevent successful

conversion.

OMISSIONS FROM ANS COBOL-74
The following major COBUL features will not be used in the final,

installed versions of CAVS:

1. Control Division

2. Sort/Merge

3. Report Writer

4, Communications Division

5. Index-Sequential I/0

IDENTIFICATION DIVISION

All CAVS programs and subprograms will have PROGRAM-ID's of six

characters or less.

Special test programs, not included in the final product, may have
names longer than six characters, but these names must be unique

within the first five characters.

3.

g B.4
1.

2.

3.

B.S
1.

3.

DATE-~COMPILED will be used to insert the compile date within the
compile listing.

ENVIRONMENT DIVISION

SOURCE-COMPUTER will not be used, unless debugging-mode is also in

use.

OBJECT-COMPUTER will not be used.

The SPECIAL-NAMES paragraph will be used. ANSI COBOL requires the
use of “WRITE...AFTER/BEFORE ADVANCING" which in turn 1s required

to define a special name for page feeds.

Computer-specific special names required to implement input and

output will be standardized for each computer.

DATA DIVISION

Level 77 data items will not be used. It will probably be removed
from future COBOL standards.

Data types.
° Character data will be stored as ASCII,

° "USAGE IS INDEX" will be used in limited cases. Source code
translated from FORTRAN will not use it.

) Most numeric information will be stored as full-word
integers. The Honeywell data definition is “USAGE IS
COMPUTATIONAL". The Univac data definition is "PIC S9(10)
USAGE IS COMPUTATIONAL". Sign position will be represented
according to the default for each machine.

Renames will not be used.

2.

5.

PROCEDURE DIVISION

Logical statements will use the spelled-out logical operators
instead of the symbols. For example CAVS will use "EQUALS"

instead of "=".

Computation and assignment statements.

] CAVS does not perform any complicated calculations; most
computations increment or decrement subscripts as tables are

manipulated.

] Numerical assignment will be done by means of COMPUTE, ADD,
and SUBTRACT statements.

° Simple alphanumeric assignments will be done by using
"MOVE".
° Special calculations will be required to compute the CPU

time consumed during testing. These calculations use
machine-specific data formats and formulae, and will be

isolated in subprograms.

Statements not used:

] ALTER

. DIVIDE

] MULTIPLY

] CORRESPONDING forms of ADD, SUBTRACT, MULTIPLY, DIVIDE,

and MOVE, such as MOVE CORRESPONDING.

Statements which will be used are

° ACCEPT
] ADD
] CALL

T AR AA- .. 5

e AR S

SR

DISPLAY

EXIT

GOTO (in code produced by the precompiler)
IF

MOVE

PERFORM

SET

SUBTRACT

STOP

The VAX-11 COBOL supports structured programming constructs which
delimit conditional expressions. Examples of such constructs are
END-IF and END-PERFORM. The CAVS contract calls for the use of
the DMA PSL Structured COBOL precompiler. Because the CAVS
contract requires use of the precompiler, and because Univac and
Honeywell do not support native COBOL structured programming
constructs, the VAX constructs (except for END-IF) will not be

used.

The DMA precompiler constructs to be used are:
CASE
CASENTRY
ELSECASE
ENDCASE
DO

DO UNTIL
DO WHILE
ENDDO

IF

ENDIF

B.7
1.

B.8
1.

Statements which may be used in isolated, data-editing contexts

are:

. INSPECT
. STRING

] UNSTRING

TABLE HANDLING

Index data items will be used to improve performance in restricted

contexts.

SET will be used to manipulate index data items and to convert

them to printable and display formats.

Both sequential and binary searches using the SEARCH verb will be

used.

GENERAL 1/0 CONSIDERATIONS

Blocking and buffering of CAVS data fiies will be established and

tuned for each installation.

Honeywell 1/0 will be controlled by the Unified File Access System
(UFAS) that is native to the COBOL-74 compiler.

The implementor-name field of the ASSIGN clause in the SELECT
statement will be six characters, the first two of which must be

unique.

Where possible, the actual file name of files used will be
assigned and controlled by the job control. Matching of the
external physical file with the internal logical file name will be
done by means of the ASSIGN clause.

B. 10
1.

3.

The VALUE-OF-ID clause will be used to specify the physical file

name only when it must be dynamically assigned or changed.

The file status keys will be used to diagnose the result of all

file 1/0 statements.

Indexed Sequential files will be not used.

All files except for tape files used for CAVS source installation

will use standard labels.

Checkpoint/restart will not be used.

SEQUENTIAL 1/0

Printer output and pagination will be controlled by counting

lines. LINEAGE will not be used.

CAVS will read and write COBOL source in ASCII. If the final
input or output should be in Fieldata, the Univac System utility
@ FURPUR will be used to convert them.

Programs instrumented by CAVS will produce an additional sequen-
tial output file, the execution trace file. Numeric data in this
file will be stored as full word binary integers. Character data
will be stored as ASCII.

RELATIVE 1/0

DELETE will not be used.

CAVS will use ASCII represeritation for all internal data mani-
pulation and I/0.

Variable-length records will not be used.

TOaT RN E R T e e e T T

BOll
1.

B.12
1.

B.13
1.

2.

LIBRARY
The COBOL COPY feature will be used.

The COPY REPLACING feature may be used to simplify the conversion

of CAVS from one vendor to another.

DEBUG

Debug statements will be used.

INTERPROGRAM COMMUNICATION
APPLY (in Univac and VAX) will not be used.

The Common-Storage Section, while not standard COBUL, is available

on the .ulvac compiler, and will be used to conserve memory.

Multiple entry points to a subprogram will not be used.

The CANCEL statement will be used.

ENTER will not be used.

B-Y

PPN

PN

MISSION
of
- Rome Avr Development Center

RADC plans and executes reseanch, development, test and
selected acquisition programs in Auppolu‘.' of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering support within areas of technical competence
48 provided to ESD Program Offices (POs) and othen ESD
elements. The prineipal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, Lnte,&agence data
collection and handling, information system technofogy,
Lonospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

% |

==

